The Standard Map

Based on a notebook by T. Timberlake (Berry College, GA).
See also the article T.Timberlake, Am. J. Phys. 72 (8) Aug 2004,
available at http://facultyweb.berry.edu/ttimberlake/cc/

Mathematica basics
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The most important Mathematica functions for studying one dimensional maps are Nest, and
NestList. Nest calculates the result of iterating a function a certain number of times, using a
certain initial value for the variable. NestList calculates each result in the iteration process and
forms all of these results into a list. The examples below illustrate how these functions can be used
with the Standard Map.

First, we must define the function we wish to iterate.

K = 1.5;
f[{6_, r_}] :=N[{Mod[6+r-KSin[6], 27, -7], Mod[r-KSin[6], 27, -7]}];

Now suppose we wanted to find the result of iterating this function four times using an initial point
{0.3,0.7}. In other words, we want to find f(f(f(f({0.3,0.7})))). In Mathematica we can simply use the
Nest function to generate this result.

Nest[f, {0.3, 0.7}, 4]

{-0.33414, 0.212161}

If we wish to see a list of all of the first four iterates of f, using an initial point {0.3,0.7}, we use
NestList instead.

NestList[f, {0.3, 0.7}, 4]

{{0.3, 0.7}, {0.55672, 0.25672}, {0.0208333, -0.535886},
{-0.546301, -0.567134}, {-0.33414, 0.212161}}

Note that this list contains five elements, the first element being our initial point (or the 0™ of the map).

Surfaces of Section

We can generate Poincare surfaces of section by applying NestList to several different initial points
in phase space. In the example below each initial point is used to generate 400 other points
through iteration of the map with K=0.8. The initial points are chosen to have 6=0 or 6=n/2, with 20
different values for r distributed evenly from 0 to 1.
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K=0.8; n=400;01=0;62=mn/2; rmax = 27; nr = 30;
MapData = Flatten[Table[Join[NestList[f, {61, i rmax /nr}, n],
NestList[f, {62, i rmax /nr}, n]], {i, O, nr}], 1];
ListPlot [MapData, PlotStyle » PointSize[0.002], PlotRange -» n {{-1, 1}, {-1, 1}},

Frame -» True, RotateLabel - False, FrameLabel » {"6", "r", , }, Axes - False]

Area-Preservation (Evolution of a Box of Initial
Conditions)

In[15]:=

To illustrate the area-preserving nature of the Standard Map we start with a large number of initial
points scattered randomly throughout some region. By applying the map to all of these points we
find that this region is mapped to a new region that has a different shape but the same area.
Repeated application of this procedure further distorts the shape of the region, but the area remains
constant.

In the example below we start with 5000 points randomly distributed in ther rectangular region
0.4<6<0.6 and 0<r<0.12. The map is iterated 4 times (niter=4) for these points and the resulting
set of points is plotted.

K=0.1; 6min=-0.27; 6max = 0.2 771; rmin = 0.0 7r; rmax = 0.4 ;r; n = 5000; niter = 2;
MapData2[niter_] := Table[Nest[f,
{Random[Real, {6min, 6max}], Random[Real, {rmin, rmax}]}, niter], {i, O, n}];
areaplot[niter_] := ListPlot[MapData2[niter], PlotStyle » PointSize[0.002],
PlotRange -» w {{-1, 1}, {-1, 1}}, Frame - True,
RotateLabel -» False, FrameLabel -» {"6", "r", "", ""}]



in19}= areaplot[10]

T
out[19]=

Animation

Manipulate[areaplot[n], {n, O, 10, 1},
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Single Trajectory
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AppearanceElements » "ResetButton"]

Plotting a single trajectory is very simple. The procedure is identical to that used to create the

surface of section, but with only a single initial point used.
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K=1.98;00=7/2; r0=0.00; n=10000;

MapData = NestList[f, {60, rO}, n];

ListPlot [MapData, PlotStyle » PointSize[0.002], PlotRange » nw {{-1, 1}, {-1, 1}},
Frame -» True, RotateLabel - False, FrameLabel » {"0", "r", "", ""}]

Exponential Divergence and Lyapunov Exponents

To illustrate exponential divergence of neighboring trajectories we can start with two different, but
very close, initial points. The distance between the iterates of these points should increase exponen-
tially with time if the initial points are in a chaotic region of the phase space. Therefore, a plot of the
natural log of this distance should increase linearly with the number of iterations. In the example
below we create such a plot using initial points {r,0} (which is a fixed point) and a slightly displaced
point. The graph shows the log of the distance between the trajectories versus the number of
iterations of the map, up to 30 iterations. Note that the function is no longer defined Modulo 1,
because this leads to incorrect measures of the distance between the trajectories.

K=2.5;01=m;rl1=0; 62 =7m+0.000000001; r2 =0; n = 20;
f[{6_, r_}] :=N[{6+r-KSin[O6], r-KSin[O]}];
Ll = NestList[f, {62, r2}, n];
DList = Table[Log[Sqrt[ (61 -L1[[i, 1]]) "2+ (rl-L1[[i, 2]])"2]], {i, n+1}];
ListPlot[DList, Frame » True, Axes - False,
FrameLabel -» {"n", "Ln(d,)", "", ""}, PlotStyle » PointSize[0.01]]

Ln(d,)

-10

-15

=20

This result can be compared to the positive Lyapunov exponent for this fixed point, which should be
equal to the slope of the line in the previous plot. The Lyapunov exponent of the fixed point is found



StandardMap_mod2pi.nb | 5

by taking the natural log of the eigenvalues of the Jacobian matrix for the fixed point (see previous
section). Using the Jacobian given in the previous section we find:

K=2.5;
Jac = {{1+K, 1}, {K, 1}};
Log[Eigenvalues[Jac]]

{1.45057, -1.45057}

The slope in the above plot is roughly given by
(DList[[15]] -DList[[1]]) / 14
1.45188

So we see that the agreement between the two is good.



